
Homework Set #3 (mini-project)
RL techniques for solve MDP with continuous state and

continuous action

This project contains three steps

1. Solving using a well known RL (Reinforcement Learning) problem that
contains continuous state and continuous action

2. Solving an average reward infinite horizon MDP of unifilar channel with
feedback by discretizing the state and the action.

3. Solving the average reward infinite horizon MDP that you solved in
step 2 using the tools from step 1, namely, RL tools and without any
discretizing.

Step 1: RL

In this step the students need to take a well known RL problem and solve it
using a well known RL tool. The state and the action must be continuous.
Its recommended to an average reward infinite horizon if possible, since in
the third and final step the RL tools need to be used for such a problem.
However, its also possible to choose a discount problem and then adapt the
RL tool for the average reward infinite horizon.

Recommended papers are [1] and [2]. Recommended RL environment gym OpenAi
I also got a suggestion using tensorforce.

You may choose other environment: the most important to have continuous
state and action.

Step 2: MDP

In this step you need to solve one of the three infnite-horizon average reward
MDP are given below. The DP formulations are given in the form depicted
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https://gym.openai.com/docs/
https://reinforce.io/blog/introduction-to-tensorforce/


by Bertsekas in [3], namely, using disturbance and functions. Solve the MDP
by discritizing the state and the action space and performing value iteration,
namely compute 1

n
T n(V )(s) or T n+1(V )(s) − T n(V )(s) for large enough n

(usually n = 20).

1. DP formulation for Trapdoor Channel capacity with feedback
[4]
Here is the DP formulation as given in [4]:

zt - the state of the DP zt ∈ [0, 1]
zt = F (zt−1, ut, wt) equation (1)
ut - the action at time t ut = (γt, δt) ∈ [0, 1− zt−1]× [0, zt−1]
wt - the disturbance wt ∈ {0, 1}

p(wt = 0 | zt−1, ut)
1+δt−γt

2

g(zt−1, ut) - reward at time t Hb(
1

2
+ δt−γt

2
) + δt + γt − 1

where Hb(α) is the binary entropy with parameter α.

zt =

{

2δt
1+δt−γt

, if wt = 0

1− 2γt
1−δt+γt

, if wt = 1
(1)

We consider an objective of maximizing infinite horizon average reward,
given a bounded reward function g : Z ×U → IR. The infinite horizon
average reward for a policy π is defined by:

ρπ = lim inf
N→∞

1

N
Eπ

{N−1
∑

t=0

g
(

zt−1, ut

)

}

(2)

and the optimal average reward is defined by ρ∗ = supπ ρπ

(a) For a bounded function h : Z → IR we define the dynamic pro-
gram operator as:

(Th)(z) = g(z, u) +
∑

w′∈W

P (w = w′|z, u)h(F (z, u, w′)) (3)
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Prove that

(Th)(z) = Hb

(

1

2
+

δ − γ

2

)

+ δ + γ − 1 +
1 + δ − γ

2
h

(

2δ

1 + δ − γ

)

+
1− δ + γ

2
h

(

1−
2γ

1− δ + γ

)

2. DP formulation for Ising channel [5]
The DP presented in [5]:

zt - the state of the DP zt ∈ [0, 1]
zt = F (zt−1, ut, wt) equation (4)
ut - the action at time t ut = (γt, δt) ∈ [0, 1− zt−1]× [0, zt]
wt - the disturbance wt ∈ {0, 1}

p(wt = 0 | zt−1, ut)
1+δt−γt

2

g(zt−1, ut) - reward at time t Hb(
1

2
+ δt−γt

2
) + δt + γt − 1

zt =

{

1 + δt−Zt−1

1+δt−γt
, if wt = 0

1−zt−1−γt
1−δt+γt

, if wt = 1
(4)

Consider again the objective of infinite horizon average reward problem.

(a) Using the same dynamic program operator defined in (3) derive
that:

(Th)(z) = Hb

(

1

2
+

δ − γ

2

)

+ δ + γ − 1 +
1 + δ − γ

2
h

(

1 +
δ − z

1 + δ − γ

)

+
1− δ + γ

2
h

(

1− z − γ

1− δ + γ

)

3. DP formulation for binary erasure channel with a no-consecutive-
ones input constraint [6]
The MDP presented in [6]:
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zt - the state of the DP zt ∈ [0, 1]
zt = F (zt−1, ut, wt) equation (5)
ut - the action at time t ut = δt ∈ [0, zt]
wt - the disturbance wt ∈ {0, ?, 1}
p(wt = 0 | zt−1, ut) (1− δt)ǭ
p(wt = 1 | zt−1, ut) δtǭ

p(wt =? | zt−1, ut) 1− ǭ

g(zt−1, ut) - reward at time t ǭHb(δt)

where ǭ ∈ (0, 1) fixed

zt =











1, if wt = 0

1− δt, if wt =?

0, ifwt = 0

(5)

Consider again the objective of infinite horizon average reward problem.

(a) Using the same dynamic program operator defined in (3) derive
that:

(Thǫ)(z) = ǭHb(δt) + (1− δ)ǭhǫ(1) + ǫhǫ(1− δ) + δǭhǫ(0) (6)

Step 3: Solving MDP with the RL tools

In this step you need to solve the MDP from Step 2 using the RL tools from
Step 1. The idea is to avoid the quantization of the state and the action,
so we can deal with more complicated channels. Namely, MDP with larger
state and action space.
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